Search results for "Pore size"

showing 10 items of 45 documents

Growth sites of polypores from quantitative expert evaluation: Late-stage decayers and saprotrophs fruit closer to ground

2017

Abstract Life history traits are key to why species occur when and where they do and how their populations will respond to environmental changes. However, dispersal-related traits of fungi are generally poorly known. We studied how spore release height from the ground, an important determinant of airborne dispersal, is connected to other traits in polypores. We collected expert evaluations of fruit body growth sites for 140 species and found that experts generally provided consistent estimates of height above the ground. Height was correlated with other traits: species fruiting on living trees, earlier decay stages and deciduous hosts tend to fruit higher above the ground. While our data do…

0106 biological sciencesspore sizefruit bodyPlant ScienceBiology010603 evolutionary biology01 natural sciencesLife history theorydispersalEcology Evolution Behavior and SystematicsFragmentation (reproduction)fungal conservationHabitat fragmentationEcologyEcology010604 marine biology & hydrobiologyEcological ModelingTaigaLate stage15. Life on landDeciduousspore releaseTraitBiological dispersalta1181habitat fragmentationFungal Ecology
researchProduct

Characterization of porous alumina membranes for efficient, real-time, flow through biosensing

2015

Abstract Nanofluidic sensing devices promise high performance by overcoming issues of mass transport of analyte molecules to the sensing surface, whilst micro-porous membranes promise high sensitivity due to a large surface for their capture. Anodic alumina (AAO) filter membranes allow the flow through of samples, and could be used as a convenient and readily available fluidic platform for the targeted delivering of analytes to bioreceptors immobilized on the pore walls. The relatively small pore dimensions, compared to fluidic diffusion lengths, promise highly efficient capture of analytes from the whole sample volume, enabling relatively fast sensing response times and the use of small sa…

AnalyteMaterials sciencegenetic structuresQuantum dotsDiffusionFiltration and SeparationNanotechnologyPorous aluminaPore size distributionBiochemistryCharacterization (materials science)AnodeMembraneGeneral Materials ScienceFluidicsPhysical and Theoretical ChemistryPorosityBiosensorOptical biosensing and sensorsProtein physisorption
researchProduct

Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics

2008

Hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramic materials are widely employed as bone substitutes due to their porous and osteoconductive structure. Their porosity and the lowering of surrounding pH as a result of surgical trauma may, however, predispose these materials to bacterial infections. For this reason, the influence of porosity and pH on the adherence of common Gram-positive bacteria to the surfaces of these materials requires investigation. Mercury intrusion porosimetry measurements revealed that the pore size distribution of both bioceramics had, on a logarithmic scale, a sinusoidal frequency distribution ranging from 50 to 300 nm, with a mean pore diameter of 20…

Calcium PhosphatesMicrobiology (medical)Pore sizeCeramicsStaphylococcus aureusSurface PropertiesMineralogyBiocompatible Materialsmedicine.disease_causeMicrobiologyBacterial AdhesionStaphylococcus epidermidisStaphylococcus epidermidismedicineZeta potentialCeramicPorositybiologyChemistryGeneral MedicineHydrogen-Ion ConcentrationBiphasic calcium phosphatebiology.organism_classificationDurapatiteStaphylococcus aureusvisual_artvisual_art.visual_art_mediumBacteriaNuclear chemistry
researchProduct

1967

Gel chromatography can be considered as a network-limited partition. This leads to the conclusion that it is impossible to find a generalizing relationship between the molecular weight and the elution volume using parameters depending only on the solute. The preparation of gels with different chemical structure is discussed and possible methods for the alteration of pore size are described. Investigations of the influence of the physical and chemical structure on separation and separation efficiency have shown that the elution volume depends to some extent on the chemical nature, but the separation efficiency is mainly a function of the physical structure. Die Gelchromatographie kann als ei…

Gel permeation chromatographyPore sizePhysical structureElutionChemistryAnalytical chemistryGeneral Materials ScienceAngewandte Makromolekulare Chemie
researchProduct

Volume change response and fabric evolution of granular MX80 bentonite along different hydro-mechanical stress paths

2022

AbstractDespite the increasing understanding of bentonite behaviour, there is still missing evidence on how different hydro-mechanical loadings, including sequences of hydration and compression, affect the fabric and the volume change behaviour of the material. It is generally assumed that the interplay between the behaviour of clay assemblages and the overall fabric of the material is the reason of having final states that are dependent on the stress path followed. Here the results of an experimental campaign aiming to study these factors are reported and discussed. Free swelling and swelling pressure tests were performed, both followed by compression to a relatively high stress. The exper…

Hydro-mechanical responseSettore ICAR/07 - GeotecnicaBentoniteClay fabric evolutionEarth and Planetary Sciences (miscellaneous)Swelling pressurePore size distributionStress-path dependencyGeotechnical Engineering and Engineering GeologyActa Geotechnica
researchProduct

Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior

2018

Metal-blending of biomass prior to pyrolysis is investigated in this work as a tool to modify biochar physico-chemical properties and its behavior as adsorbent. Six different compounds were used for metal-blending: AlCl3, Cu(OH)2, FeSO4, KCl, MgCl2 and Mg(OH)2. Pyrolysis experiments were performed at 400 and 700 °C and the characterization of biochar properties included: elemental composition, thermal stability, surface area and pore size distribution, Zeta potential, redox potential, chemical structure (with nuclear magnetic resonance) and adsorption behavior of arsenate, phosphate and nitrate. Metalblending strongly affected biochars' surface charge and redox potential. Moreover, it incre…

LangmuirEnvironmental EngineeringP06 - Sources d'énergie renouvelableHealth Toxicology and Mutagenesishttp://aims.fao.org/aos/agrovoc/c_290360208 environmental biotechnology02 engineering and technology010501 environmental sciences01 natural sciencesRedoxchemistry.chemical_compoundAdsorptionBiocharPhysico-chemicalBiomasseZeta potentialEnvironmental ChemistrySurface chargeBiomassOxydation0105 earth and related environmental scienceshttp://aims.fao.org/aos/agrovoc/c_26874Designer biocharMetalPublic Health Environmental and Occupational HealthArsenateGeneral MedicineGeneral ChemistryOxyanionPore size distributionMétalPollutionMetal-blendingU50 - Sciences physiques et chimie020801 environmental engineeringhttp://aims.fao.org/aos/agrovoc/c_926chemistryChemical engineeringMetalsCharcoalCharbonPyrolyseAdsorptionhttp://aims.fao.org/aos/agrovoc/c_5472Pyrolysishttp://aims.fao.org/aos/agrovoc/c_1693
researchProduct

Preparation of three-layered porous PLA/PEG scaffold: relationship between morphology, mechanical behavior and cell permeability.

2015

Interface tissue engineering (ITE) is used to repair or regenerate interface living tissue such as for instance bone and cartilage. This kind of tissues present natural different properties from a biological and mechanical point of view. With the aim to imitating the natural gradient occurring in the bone-cartilage tissue, several technologies and methods have been proposed over recent years in order to develop polymeric functionally graded scaffolds (FGS). In this study three-layered scaffolds with a pore size gradient were developed by melt mixing polylactic acid (PLA) and two water-soluble porogen agents: sodium chloride (NaCl) and polyethylene glycol (PEG). Pore dimensions were controll…

Materials scienceBone RegenerationCell SurvivalPolymersParticulate leachingPolyestersBiomedical EngineeringBiocompatible Materials02 engineering and technologyPolyethylene glycol010402 general chemistry01 natural sciencesPermeabilityCell LinePolyethylene GlycolsBiomaterialschemistry.chemical_compoundMicePolylactic acidTissue engineeringMelt mixingPEG ratioAnimalsLactic AcidComposite materialBone regenerationPorosityCell ProliferationMechanical Phenomenachemistry.chemical_classificationTissue ScaffoldsInterface tissue engineeringPore size gradientAdhesivenessWaterFunctionally graded scaffoldPolymerPermeation021001 nanoscience & nanotechnologyBiomaterial0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistrySolubilityMechanics of Materials0210 nano-technologyPorosityJournal of the mechanical behavior of biomedical materials
researchProduct

Pore shape affects the determination of the pore size of ordered mesoporous silicas by mercury intrusion.

2008

MCM-41 and SBA-15 micelle-templated silicas are ideal reference materials to study the effect of surface roughness on pore size measurement by mercury intrusion, as the inner surface of the mesoporous channels is much rougher in the case of SBA-15 than MCM-41. In the case of MCM-41, the pressure of mercury intrusion is related to the pore size by the classical Washburn−Laplace law, while in the case of SBA-15, the pressure of intrusion is much higher than expected and classical models underevaluate the size of the channels. Defects on the pore surface of SBA-15 affect the mercury intrusion in a similar way as the deviation from cylindrical geometry does for the pores of spongelike silica gl…

Materials sciencemesoporesMineralogyBinary compoundchemistry.chemical_element02 engineering and technologyMCM-41010402 general chemistry01 natural sciencesContact anglechemistry.chemical_compoundTransition metalMCM-41Surface roughnesspore sizeComposite materialComputingMilieux_MISCELLANEOUSporosimetry[CHIM.MATE]Chemical Sciences/Material chemistryPorosimetry021001 nanoscience & nanotechnology0104 chemical sciencesMercury (element)SBA-15[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]chemistry[ CHIM.MATE ] Chemical Sciences/Material chemistry[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]0210 nano-technologyMesoporous material
researchProduct

Bi-layer PCL/PLA scaffold prepared by melt for interface tissue engineering

2017

The development of porous multilayer devices allow controlling chemical, physical and mechanical properties by tuning the properties of each single layer. For instance, this feature is of main concern for the production of porous devices designed to regenerate diseased zones at the interface of tissue presenting intrinsic anisotropic structures that gradually change from one tissue to another. In this context, synthetic biodegradable polymers commonly used biomedical applications include polylactic acid (PLA) and polycaprolactone (PCL). In this work, a novel bi-layered multiphasic scaffold (BLS) is presented. It is composed by a PLA-layer presenting pore size in the range of 90-110 μm while…

Melt mixingParticulate leachingInterface tissue engineeringPore size gradientFunctionally graded scaffold
researchProduct

Preparation of polymeric foams with a pore size gradient via Thermally Induced Phase Separation (TIPS)

2015

Abstract Foams with a pore size gradient are promising materials for tissue engineering applications where a complex architecture involving morphological variations in space must be mimicked, e.g. in bone tissue repair. In this paper, a technique to obtain a porous scaffold with a pore size gradient is presented. The preparation procedure is based on Thermally Induced Phase Separation (TIPS), by imposing a different thermal history on the two sides of a polymeric solution. In this way, a gradient in thermal history is produced, which will generate a pore size monotonously varying along scaffold thickness. By controlling some parameters easy to manipulate, such as demixing temperature and/or…

MorphologyPore sizeScaffoldRange (particle radiation)Materials scienceMorphology (linguistics)ChromatographySpinodal decompositionMechanical EngineeringPhase separationPore size gradientSettore ING-IND/34 - Bioingegneria IndustrialeCondensed Matter PhysicCondensed Matter PhysicsResidence time (fluid dynamics)Bone tissuePolymer solutionmedicine.anatomical_structureMechanics of MaterialsThermalmedicineGeneral Materials ScienceMaterials Science (all)Composite materialMaterials Letters
researchProduct