Search results for "Pore size"
showing 10 items of 45 documents
Growth sites of polypores from quantitative expert evaluation: Late-stage decayers and saprotrophs fruit closer to ground
2017
Abstract Life history traits are key to why species occur when and where they do and how their populations will respond to environmental changes. However, dispersal-related traits of fungi are generally poorly known. We studied how spore release height from the ground, an important determinant of airborne dispersal, is connected to other traits in polypores. We collected expert evaluations of fruit body growth sites for 140 species and found that experts generally provided consistent estimates of height above the ground. Height was correlated with other traits: species fruiting on living trees, earlier decay stages and deciduous hosts tend to fruit higher above the ground. While our data do…
Characterization of porous alumina membranes for efficient, real-time, flow through biosensing
2015
Abstract Nanofluidic sensing devices promise high performance by overcoming issues of mass transport of analyte molecules to the sensing surface, whilst micro-porous membranes promise high sensitivity due to a large surface for their capture. Anodic alumina (AAO) filter membranes allow the flow through of samples, and could be used as a convenient and readily available fluidic platform for the targeted delivering of analytes to bioreceptors immobilized on the pore walls. The relatively small pore dimensions, compared to fluidic diffusion lengths, promise highly efficient capture of analytes from the whole sample volume, enabling relatively fast sensing response times and the use of small sa…
Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics
2008
Hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramic materials are widely employed as bone substitutes due to their porous and osteoconductive structure. Their porosity and the lowering of surrounding pH as a result of surgical trauma may, however, predispose these materials to bacterial infections. For this reason, the influence of porosity and pH on the adherence of common Gram-positive bacteria to the surfaces of these materials requires investigation. Mercury intrusion porosimetry measurements revealed that the pore size distribution of both bioceramics had, on a logarithmic scale, a sinusoidal frequency distribution ranging from 50 to 300 nm, with a mean pore diameter of 20…
1967
Gel chromatography can be considered as a network-limited partition. This leads to the conclusion that it is impossible to find a generalizing relationship between the molecular weight and the elution volume using parameters depending only on the solute. The preparation of gels with different chemical structure is discussed and possible methods for the alteration of pore size are described. Investigations of the influence of the physical and chemical structure on separation and separation efficiency have shown that the elution volume depends to some extent on the chemical nature, but the separation efficiency is mainly a function of the physical structure. Die Gelchromatographie kann als ei…
Volume change response and fabric evolution of granular MX80 bentonite along different hydro-mechanical stress paths
2022
AbstractDespite the increasing understanding of bentonite behaviour, there is still missing evidence on how different hydro-mechanical loadings, including sequences of hydration and compression, affect the fabric and the volume change behaviour of the material. It is generally assumed that the interplay between the behaviour of clay assemblages and the overall fabric of the material is the reason of having final states that are dependent on the stress path followed. Here the results of an experimental campaign aiming to study these factors are reported and discussed. Free swelling and swelling pressure tests were performed, both followed by compression to a relatively high stress. The exper…
Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior
2018
Metal-blending of biomass prior to pyrolysis is investigated in this work as a tool to modify biochar physico-chemical properties and its behavior as adsorbent. Six different compounds were used for metal-blending: AlCl3, Cu(OH)2, FeSO4, KCl, MgCl2 and Mg(OH)2. Pyrolysis experiments were performed at 400 and 700 °C and the characterization of biochar properties included: elemental composition, thermal stability, surface area and pore size distribution, Zeta potential, redox potential, chemical structure (with nuclear magnetic resonance) and adsorption behavior of arsenate, phosphate and nitrate. Metalblending strongly affected biochars' surface charge and redox potential. Moreover, it incre…
Preparation of three-layered porous PLA/PEG scaffold: relationship between morphology, mechanical behavior and cell permeability.
2015
Interface tissue engineering (ITE) is used to repair or regenerate interface living tissue such as for instance bone and cartilage. This kind of tissues present natural different properties from a biological and mechanical point of view. With the aim to imitating the natural gradient occurring in the bone-cartilage tissue, several technologies and methods have been proposed over recent years in order to develop polymeric functionally graded scaffolds (FGS). In this study three-layered scaffolds with a pore size gradient were developed by melt mixing polylactic acid (PLA) and two water-soluble porogen agents: sodium chloride (NaCl) and polyethylene glycol (PEG). Pore dimensions were controll…
Pore shape affects the determination of the pore size of ordered mesoporous silicas by mercury intrusion.
2008
MCM-41 and SBA-15 micelle-templated silicas are ideal reference materials to study the effect of surface roughness on pore size measurement by mercury intrusion, as the inner surface of the mesoporous channels is much rougher in the case of SBA-15 than MCM-41. In the case of MCM-41, the pressure of mercury intrusion is related to the pore size by the classical Washburn−Laplace law, while in the case of SBA-15, the pressure of intrusion is much higher than expected and classical models underevaluate the size of the channels. Defects on the pore surface of SBA-15 affect the mercury intrusion in a similar way as the deviation from cylindrical geometry does for the pores of spongelike silica gl…
Bi-layer PCL/PLA scaffold prepared by melt for interface tissue engineering
2017
The development of porous multilayer devices allow controlling chemical, physical and mechanical properties by tuning the properties of each single layer. For instance, this feature is of main concern for the production of porous devices designed to regenerate diseased zones at the interface of tissue presenting intrinsic anisotropic structures that gradually change from one tissue to another. In this context, synthetic biodegradable polymers commonly used biomedical applications include polylactic acid (PLA) and polycaprolactone (PCL). In this work, a novel bi-layered multiphasic scaffold (BLS) is presented. It is composed by a PLA-layer presenting pore size in the range of 90-110 μm while…
Preparation of polymeric foams with a pore size gradient via Thermally Induced Phase Separation (TIPS)
2015
Abstract Foams with a pore size gradient are promising materials for tissue engineering applications where a complex architecture involving morphological variations in space must be mimicked, e.g. in bone tissue repair. In this paper, a technique to obtain a porous scaffold with a pore size gradient is presented. The preparation procedure is based on Thermally Induced Phase Separation (TIPS), by imposing a different thermal history on the two sides of a polymeric solution. In this way, a gradient in thermal history is produced, which will generate a pore size monotonously varying along scaffold thickness. By controlling some parameters easy to manipulate, such as demixing temperature and/or…